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A numerical study of the three-dimensional fluid dynamics inside a model left ventricle
during diastole is presented. The ventricle is modelled as a portion of a prolate spher-
oid with a moving wall, whose dynamics is externally forced to agree with a simplified
waveform of the entering flow. The flow equations are written in the meridian body-
fitted system of coordinates, and expanded in the azimuthal direction using the
Fourier representation. The harmonics of the dependent variables are normalized in
such a way that they automatically satisfy the high-order regularity conditions of the
solution at the singular axis of the system of coordinates. The resulting equations
are solved numerically using a mixed spectral–finite differences technique. The flow
dynamics is analysed by varying the governing parameters, in order to understand the
main fluid phenomena in an expanding ventricle, and to obtain some insight into the
physiological pattern commonly detected. The flow is characterized by a well-defined
structure of vorticity that is found to be the same for all values of the parameters,
until, at low values of the Strouhal number, the flow develops weak turbulence.

1. Introduction
The physically based modelling of biological flows has received growing attention

in the last years. Specifically, the enormous increase of available data that can be
obtained by the current diagnostic tools requires the development of interpretative
schemes to allow data synthesis and to improve the understanding of the physical
processes involved. Cardiac dynamics represents a central such issue given its
physiological relevance. However, the fluid dynamics in the heart cavities, and the
fluid–tissue interaction, present several modelling difficulties and understanding is still
far from being satisfactory.

Several recent studies have focused on the left ventricle filling dynamics (diastole),
which is known to play an important role in the heart functionality (Mandinov
et al. 2000; Vasan & Levy 2002) and which presents a rich fluid dynamics. From
experimental (Steen & Steen 1994) and numerical results (Vierendeels et al. 2000;
Baccani, Domenichini & Pedrizzetti 2002a), limited to an axisymmetric picture, the
principal features of the left ventricle diastolic filling have been described. During the
early phase, the flow that enters the ventricle from the atrium through the mitral valve
(the mitral jet) develops compact ring-shaped vortex structures, which rapidly interact
with the wall boundary layer while travelling towards the ventricular apex where they
eventually dissipate. Such experimental and numerical results have been compared
with clinical observations by evaluating the velocity on a one-dimensional space subset
along the ventricle axis, and constructing the space–time map of the axial velocity. The
analysis in terms of this reduced representation, which is common in echo-Doppler
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diagnostic imaging (transmitral M-mode; Garcia, Thomas & Klein 1998), suggests
the interpretation of diagnostic images in terms of vortex dynamics (Baccani et al.
2002b; Vierendeels, Dick & Verdonck 2002). In the same axisymmetric framework,
the influence of the mitral valve at the ventricular entrance was also studied (Baccani,
Domenichini & Pedrizzetti 2003), showing how the indicators commonly extracted by
clinicians are also related to the valvular opening motion.

The axisymmetric modelling gives some preliminary understanding of the ventri-
cular flow, but it is not a realistic enough approximation for the interpretation of
the phenomena that are present in most circumstances. The actual dynamics is far
from being axisymmetric. From flow visualizations (Bellhouse 1972; Reul, Talukder &
Muller 1981; Wieting & Stripling 1984) it appears that the vortex-ring-like structure
forming at the mitral entrance rapidly deforms, depending on the different shapes
and sizes of the valvular leaflets. The entering structure develops with a large vortex
located behind the longer valvular leaflet and a smaller one on the opposite side. The
larger circulation cell persists during the following contraction phase (systole) possibly
facilitating blood ejection from the ventricle to the aorta. Such a flow pattern also
avoids the stagnation of fluid at the cavity apex that could induce negative physio-
logical consequences (thrombus). This description is based on a two-dimensional
view looking at the flow picture on a plane cross-section, while the structure of the
corresponding three-dimensional flow is still unclear. A related study of the three-
dimensional flow entering a circular duct through an eccentric orifice (Bolzon, Zovatto
& Pedrizzetti 2003) has shown how the presence of a small eccentricity drives the
flow away from the axisymmetric solution.

The numerical solution of the ventricular flow presents several difficulties due to
the moving boundary and the flow–wall interaction, which are of primary relevance in
closed cavity problems. The fluid dynamics phenomena that participate are intense:
the inflow is an impulsive jet that enters a cavity a few centimetres long with a velocity
near to 1 m s−1, and that almost instantaneously reaches the ventricle moving wall
and interacts with it.

A first numerical solution based on the finite volumes method, forced by a quasi-
stationary wall motion, was proposed by Taylor & Yamaguchi (1995). There a realistic
(dog) ventricular geometry was prepared a priori, defining a set of configurations
which change at given instants of time and are kept constant in between; the fluid
equations were integrated during these intervals of time imposing a flow through the
wall. Recently, a coupled magnetic resonance imaging–computational fluid dynamics
(MRI-CFD) study on a realistic heart was performed by Saber et al. (2001); there
the gross features of the flow are captured and the development of secondary flow is
shown. However, the work is primarily intended to show the feasibility of the MRI-
CFD approach; the results are not analysed in a fluid dynamics perspective and suffer,
as admitted by the authors, from insufficient accuracy in the resolution and some
limitations in the boundary condition modelling. A more recent work (Nakamura
et al. 2003) presents some insights into the three-dimensional left ventricle flow, but
the reported results seem to be limited by the dominance of the numerical viscous
effects resulting from the continuous remeshing procedure and by the coarseness of
the numerical grid.

An alternative method for the coupled solution of the fluid–wall problem has been
developed by introducing the concept of immersed boundary elements (IBE). In the
IBE method the fluid problem is solved on a regular domain (typically a periodic
box), with a distribution of fictitious body forces. These replace the presence of the
wall, which in turn moves with the fluid by an iterative procedure (see Peskin &
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McQueen 1989a, b for details). Such an approach is well-suited to reproducing the
valve dynamics and it also has a generality of application in arbitrarily complex
three-dimensional geometries. On the other hand, the method presents a reduced
accuracy in the boundary layers, because the wall does not lie on coordinate curves,
where interpolating/spreading procedures are necessary to transform Eulerian (fluid)
quantities to Lagrangian (solid) ones, and vice versa. This method has been applied
to the dynamics of the left heart (Lemmon & Yoganathan 2000; McQueen & Peskin
2000), where the gross phenomena due to the fluid–tissue interaction are reproduced.

This work is devoted to the numerical modelling and an initial understanding
of the three-dimensional structure of the flow entering a ventricular-shaped cavity.
Extending the axisymmetric model of Baccani et al. (2002a), the ventricular geometry
is taken as that of a prolate spheroid with moving walls. The proper connection of the
left ventricular model with the cardiovascular system requires the quantification of
several parameters, including the thick-tissue time-varying mechanical properties and
a reference pressure time profile, or parameters of a general lumped model. Given the
difficulty in obtaining realistic data for such quantities (Stevens et al. 2003), we force
the system with the dynamics of the walls that are easily accessed in routine ultrasound
measurements, and that are directly related to the time-law of the entering discharge.

The flow equations are written in the moving body-fitted system of coordinates,
and expanded in the azimuthal direction using Fourier series. Particular care is taken
in defining a mathematical well-posed problem about the singular axis of the prolate
spheroid coordinate system. For this, a normalization of the variables is introduced
following a method previously developed by the authors in cylindrical coordinates
(Domenichini & Baccani 2004), which allows the appropriate definition of the boun-
dary and regularity conditions for the Fourier harmonics at the singular axis. A mixed
spectral–finite differences numerical method is thus used, allowing enhanced resolution
at the ventricle wall and close to the inlet section, where significant vorticity gradients
are expected.

The flow structure is analysed starting from conditions that depart from the axisym-
metric case and move towards more realistic ones. The flow parameters are varied
within the physiological range, from young heart conditions towards values of the
Reynolds number when the development of weak turbulence is expected. The mathe-
matical formulation and the numerical method are reported in § 2 and § 3, respectively;
results are discussed in § 4, and concluding remarks can be found in § 5.

2. Mathematical formulation
The mathematical formulation starts from that reported in Baccani et al. (2002a)

for the axisymmetric case, where the moving prolate spheroid system of coordinates
is introduced. The flow domain is half of a prolate spheroid; its geometry is defined
by the temporal functions D(t) and H (t), that is the time variation of the equatorial
plane diameter and of the major semiaxis, respectively, as sketched in figure 1.

The domain is described by the system of prolate spheroidal moving coordinates
{µ, η, θ}, where µ ∈ [0, 1], η ∈ [0, π/2], and θ ∈ [0, 2π]; µ and η map the meridian
plane, θ is the cylindrical azimuthal coordinate. The cavity wall corresponds to the
coordinate surface µ = 1, and the mitral (inlet) plane to η = π/2. The relationship
between the chosen system of coordinates and the cylindrical ones {z, r, θ} is

r = δ(t) sinh(α(t)µ) sin η,

z = δ(t) cosh(α(t)µ) cos η,

θ = θ.


 (1)
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Figure 1. Sketch of (a) the physical problem and (b) of the mathematical model.

The time-varying functions α(t) and δ(t) are related to H (t) and D(t) by

δ = (H 2 − D2/4)1/2, α = tanh−1(D/2H ); (2)

in the present case we assume a fixed ratio H/D = 2, that is tanh(α) = 0.25. Typically
this ratio oscillates weakly around this value during the cardiac cycle, such a variation
is usually different for each case. Once the time variation of the ventricle volume
V (t) is known, e.g. once the entering discharge is specified, the function D(t), and
consequently H (t), can be easily derived using geometrical considerations, and from
these δ(t) is obtained.

The metric coefficients of the coordinates system are

hµ = αhη, hη = δ

√
cosh2(αµ) − cos2 η, hθ = δ sinh(αµ) sin η, (3)

where the time dependence is omitted for brevity. This system of coordinates describes
a moving object in the physical space; therefore a fixed point in the {µ, η, θ} space
has a physical velocity c, whose components can be written in the general case as

cµ = δ̇
δα

hµ

sinh(αµ) cosh(αµ) + µhµ

α̇

α
, cη = −δ̇

δ

hη

sin η cos η, cθ = 0, (4)

where the dot indicates time derivative. In the present case, the expression for cµ

simplifies, since α̇ =0.
The dimensionless Navier–Stokes and continuity equations are written as

∂v

∂t
+ ω × (v − c) + v · ∇c = −∇φ − 1

β
∇ × ω, (5a)

∇ · v = 0. (5b)

The vectors v and ω are the velocity and vorticity, respectively, and c is the velocity
of the system of coordinates defined in (4); they are all measured with respect to the
laboratory frame, expressed as functions of {µ, η, θ}. It is important to point out that
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the spatial differential operators in (5a) are written in the curvilinear system {µ, η, θ}
defined in (1); equally the time derivative is not taken at a fixed position but at fixed
values of these coordinates. The scalar field φ represents the irrotational contribution
to the flow, that is φ = p + v2/2 − c · v, where p is the dimensionless pressure field and
v is the velocity modulus. To write (5a), the differential identity

c · ∇v = ω × c + (∇ × c) × v − v · ∇c + ∇(c · v)

has been used; it can be easily verified from (4) that, assuming α̇ = 0, ∇ × c=0 and
v · ∇c= δ̇v/δ. The general form of the differential operators in (5) for an orthogonal
system of coordinates can be found in Batchelor (1967), and Morse & Feshbach
(1953).

The diameter D0 = D(t = 0) at the beginning of the diastolic filling phase is chosen
as reference lengthscale. The timescale T is the heartbeat period; thus we have a Stokes
number β = D2

0/νT , ν being the kinematic viscosity of the fluid. The diastolic phase
analysed here has therefore a dimensionless duration approximately equal to 0.5.

The system is forced with a given time law of the entering discharge; a simple
analytical form is chosen, that reproduces the rapid acceleration and slower decelera-
tion of a flow pulsation inside the heart chambers and principal arterial vessels. It is
represented by the dimensionless function

Q(t) = A(St)t2 exp(−f t); (6)

f =20 is the characteristic frequency of the deceleration, giving a peak time tp =0.1.
The function A(St) that scales the total discharge depends on the Strouhal number
St = D0/UT ; the scale U is the velocity at the inlet section, η = π/2, corresponding to
the peak value of the discharge Qp = Q(tp), averaged on the area effectively occupied
by the entering jet. The following eccentric blunt velocity profile vη is assigned at the
inlet:

vη(µ, θ) = C(t) exp

[
−

(
(r cos θ − ε)2 + (r sin θ)2

σ 2

)4
]

at η = π/2; (7)

ε is the eccentricity of the profile, σ controls the ratio between the entering jet and
the diameter D(t), C is the normalization coefficient to agree with the integral (6).
From (7), the velocity scale is U =4Qp/π(σD0)

2.
Realistic values for the parameters are σ � 0.6 to 0.7, and ε � 0.1 to 0.15, see figure 1;

in the present work, a fixed value σ = 0.6 has been used, therefore A= 209/St. The
scaling quantities are chosen for their physical significance, and also following the
values commonly measured in clinical practice. Typical dimensional values in healthy
young adults are T � 0.8 s to 1 s, corresponding to 75 and 60 heartbeats per minute,
U is about 0.5 m s−1 or little above it, and D0 from 0.02 to 0.025 m. From these values,
the Stokes parameter β ranges between 120 and 250, assuming ν � 3.3 × 10−6 m2 s−1,
and St can be assumed between 0.03 and 0.075. A peak Reynolds number can be
defined as Re = UD0/ν =β/St.

From (5a), the derivation of the three scalar momentum balances along the
coordinate directions is tedious but straightforward. Then, any variable is expanded
in Fourier series along θ as f (µ, η, θ, t) =

∑
fn(µ, η, t) einθ , where the fn are complex

functions and i is the imaginary unit. The introduction of the Fourier expansions into
(5) gives the evolution equations for the harmonics of the velocity components, and
the corresponding mass conservation laws.

The system of equations obtained is completed with the boundary conditions. At
the wall, the fluid velocity vector is equal to that at the wall (4). At the mitral plane,
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the profile (7) of the normal velocity vη is imposed with a zero normal derivative
condition for the other velocity components.

The singular axis, r = 0 in cylindrical coordinates, corresponds in the present system
to the coordinate curves µ = 0 and η = 0; its treatment requires particular attention,
because the condition of continuity of the variables and their derivatives must be
guaranteed by the spectral representation. In particular, the regularity of the spectral
solution requires imposing conditions on the nth harmonic up to the nth derivative
(Lewis & Bellan 1990; Lopez, Marques & Shen 2002) as follows. At µ = 0,

∂kvηn

∂µk
= 0 for k = 0, 1, . . . , n − 1,

∂kvµn

∂µk
=

∂kvθn

∂µk
= 0 for k = 0, 1, . . . , n − 2, n,


 (8)

where n> 0; the case n= 0 is recovered from the axisymmetric case, giving ∂vη0/

∂µ= vµ0 = vθ0 = 0. Analogous expressions, exchanging µ and η, hold at η = 0.
Several methods have been suggested for the accurate description of the flow close

to the symmetry axis taking into account conditions (8) (Constantinescu & Lele 2002,
and references therein). In the present work we generalize the approach previously
developed in cylindrical coordinates (Domenichini & Baccani 2004), where the flow
variables are normalized with the distance from the singular axis. In that work, the
velocity harmonics, e.g. vkn where k stands for the components {z, r, θ}, are substituted
by normalized ones, gkn, defined by vkn = gknr

|n|−1. The generalization to the present
case is performed by considering that the radial distance r = δ sinh(αµ) sin η defined
in (1) behaves close to the axis as r ∼ µ when µ → 0, and as r ∼ η when η → 0. It
follows that a natural definition of scaled harmonics for this case is

vkn(µ, η) = gkn(µ, η)µ|n|−1η|n|−1, (9)

where n �= 0, and k stands for {µ, η, θ}. Along the same lines, a pseudopotential Q is
introduced to normalize φ in (5a), as

φn(µ, η) = Qn(µ, η)µ|n|η|n|, (10)

and the scaled vorticity field is defined by

ωkn(µ, η) = qkn(µ, η)µ|n|−2η|n|−2. (11)

For the zeroth mode, the formulation in terms of primitive variables is left unchanged
(Baccani et al. 2002a).

The normalization is a method to account for the high-order conditions (8) that,
when recast in terms of the scaled variables, become

gηn = 0,
∂gµn

∂µ
=

∂gθn

∂µ
= 0, (12)

and similarly at η =0. These are conditions up to the first order, and they can be
directly satisfied as boundary conditions in the (scaled) Navier–Stokes equations. The
conditions (12) on the normalized variables correspond to the high-order conditions
(8) on the primitive variables. Conditions for the harmonics Qn and qkn are derived
from (12):

∂Qn

∂µ
= 0 at µ = 0,

∂Qn

∂η
= 0 at η = 0, (13)

qkn = 0 at µ = 0 and at η = 0. (14)
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Once the normalizations (9)–(11) have been introduced, the differential operators
can be rewritten to obtain the relationships between the normalized fields. A formal
curl operator relating the harmonics qkn to the gkn ones is defined giving, as an
example for qµn,

qµn =
µη

hηhθ

[
η

∂

∂η

(
gθnhθ

η

)
+

ngθnhθ

η
− ingηhη

]
. (15)

Following the same lines, a formal gradient operator which gives an irrotational con-
tribution to the g field when applied to the pseudopotential Q is

gµn =
η

hµ

(
µ

∂Qn

∂µ
+ nQn

)
, gηn =

µ

hη

(
η
∂Qn

∂η
+ nQn

)
, gηn =

inQnµη

hθ

. (16)

Note that definitions (15)–(16) automatically satisfy the differential identity ∇×∇φ=0,
when rewritten in terms of the normalised variables. The same procedure is followed
to define a formal divergence operator.

Once the scalar form of the Navier–Stokes equation (5a) has been projected into
the Fourier space, and the primitive variables and operators have been substituted
accordingly with (9)–(16), the equations to be solved become, after some mani-
pulations,

∂gµn

∂t
+ Gµn + NLµn = − η

hµ

(
µ

∂Qn

∂µ
+ nQn

)
− 1

β
Vµn,

∂gηn

∂t
+ Gηn + NLηn = − µ

hη

(
η
∂Qn

∂η
+ nQn

)
− 1

β
Vηn,

∂gθn

∂t
+ Gθn + NLθn = − inQnµη

hθ

− 1

β
Vθn.




(17)

The nonlinear NLµn term, coming from the contribution ω × v|µn in (5a), is

NLµn =
1

µ2η2

∑
m,j

m+j=n

(gηmqθj − qθmgηj )(µη)|m+j |−(m+j ), (18)

and similarly for NLηn and NLθn. The viscous term Vµn is

Vµn =
1

hηhθ

[
1

µ

∂

∂η

(
hθqθ

η

)
+ (n − 1)

hθqθ

µη2
− in

hηqη

µη

]
. (19)

The Gkn linear terms due to the coordinate motion are easily derived from the
original formulation. The boundary conditions at the wall and at the inlet plane (7)
are rewritten in terms of the scaled variables.

The evolution equations (17) for the harmonics gkn, with boundary conditions
(12)–(14), correspond to the Navier–Stokes equation in terms of primitive variables
incorporating all the regularity conditions (8) at the singular axis.

3. Numerical method
The mathematical problem described in § 2 is solved numerically. In the meridian

plane {µ, η}, the flow equations are made discrete on a face-centred staggered grid
with standard second-order finite differences. A fractional step method is used for
the time advancement following Verzicco & Orlandi (1996), where the intermediate
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non-soleinodal field is evaluated using the current irrotational contribution. The
intermediate field ĝ is obtained using a low-storage third-order Runge–Kutta explicit
scheme. Once the intermediate non-soleinodal field ĝ is known, the mass conservation
law is enforced by solving Poisson-type equations for the corrections �Qn of the
pseudopotential harmonics Qn. The procedure can be summarized as

ĝkn = gkn(t) + �gkn,

D ĝn = DG(�Qn(t + �t)),

gkn(t + �t) = ĝkn − Gk(�Qn(t + �t)),

Qn(t + dt) = Qn(t) + �Qn(t + �t) + O(�t/β),

where �gkn indicates symbolically the time advancement of (17), G and D are the
discrete versions of the formal gradient (16) and divergence operators, respectively,
and the subscripts n and k have the same meaning as in equation (9). Attention
has been paid that the discrete curl operator C (giving qkn when applied to gkn) is
defined congruently to the discrete gradient operator G in order to satisfy the discrete
differential identity C(Gf ) = 0, where f is an arbitrary scalar field. Note that, because
of the grid motion, the operators, and therefore the coefficients of the linear system
operator DG, must be updated at each time step. The presence of the irrotational
(pressure) term in �gn, see equations (5a) and (17), allows the instantaneous boundary
conditions to be imposed on the ĝ field (Verzicco & Orlandi 1996). The Poisson-
type equations are then solved by imposing instantaneous impenetrability at the
boundaries, and the regularity conditions (13) at the axis.

At t = 0, the flow is assumed to start from rest; the initial value δ(0) is computed
from H (0) and D(0), and then updated during computation.

The nonlinear term (18) is computed with a direct convolution in the Fourier space
or, alternatively, in the physical domain using a zero-padding technique (Canuto et al.
1988), giving indistinguishable results; the method is selected to optimize the speed
depending on the number of harmonics effectively solved (see Domenichini & Baccani
2004 for estimates in an analogous method in cylindrical coordinates).

In the meridian plane, the resolution employed is [Nµ × Nη] = [96 × 128], Nµ and
Nη being the number of computational cells in the µ- and η-directions, respectively.
Stretched grids are used to improve resolution near the walls and the mitral plane;
details can be found in Baccani et al. (2002a). Grid refinement studies have been
performed by varying numerical parameters and resolution up to [128×160] to verify
that the results are not influenced by the numerics. In the azimuthal direction, the
number Nθ of the effectively solved harmonics has been varied; the results reported
in what follows are obtained with Nθ =12 (corresponding to 16 harmonics when the
zero-padding technique is used); depending on the value of the eccentricity ε, a smaller
number of harmonics proved to be sufficient in these ranges of physical parameters.
The time step �t is selected to satisfy the convective and diffusive stability criteria,
the latter being the more restrictive (especially close to the focus of the coordinate
system); the results have been obtained with �t values from 2−12 up to 2−15 in the
most viscous (low-β) cases.

4. Results
The system has been analysed by varying the eccentricity ε of the inlet profile (7)

in the range from 0.02 to 0.125. The Stokes number β was considered in the interval
between 64 and 144, the Strouhal number was first set at St =0.072 and then reduced
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Figure 2. Distribution of ωy on the symmetry plane, St =0.072, β = 144, ε =0.125; (a) t = 20/
128, (b) t = 40/128, (c) t = 50/128. Levels from −262.5 to 262.5, step 25; positive values black,
negative values grey.

to 0.05. The case β =144, St =0.072, ε =0.125 is discussed as a reference one; the
results are then compared to those obtained with different values of the parameters.

The axisymmetric geometry and the inlet velocity profile (7) result in the presence
of a symmetry plane, the plane sin θ = 0. The presence of a symmetry plane is a useful
feature for the analysis of the results (Bolzon et al. 2002), because the velocity has no
component normal to it and the only non-zero vorticity is ωθ . In order to facilitate
readability, when the flow evolution on the symmetry plane is described, the Cartesian
component ωy is plotted in place of ωθ .

4.1. Flow evolution for β = 144, St= 0.072, ε =0.125

In figure 2, the evolution of ωy on the symmetry plane is reported. During the initial
stage of the motion, most of the flow is irrotational, with the exception of the viscous
boundary layer at the cavity wall and of a well-defined vortex structure close to the
entrance. This structure is a ring-shaped vortex, whose geometry is strictly related to
the eccentricity of the entering velocity profile, as will be shown in § 4.2. A picture of
this initial period is shown in figure 2(a), t =20/128, where the right (counterclockwise,
black in the figure) portion of the vortex extends along the ventricle wall, while the
left portion develops a roll-up in the central part of the cavity. An opposite-sign
vortex-induced boundary layer at the wall is found on both sides and the vorticity
distribution is very similar to what would be expected in a two-dimensional problem.
During the following evolution, when the entry flow decelerates, the right compact
part of the vortex structure strongly interacts with the vortex-induced boundary layer
that separates with the appearance of a third vorticity layer, figure 2(b), t =40/128.
On the opposite side, the main compact structure grows in size, and interacts more
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Figure 3. Isosurface of λ2, St = 0.072, β =144, ε =0.125; (a) t = 20/128, (b) t = 40/128,
(c) t =50/128. Value: −1000.

weakly with the boundary layer moving toward the centre of the cavity. Here we
start to see evidence of an evolution that is driven by out-of-plane phenomena. The
shear layer that connects the inlet to the leading vortex (left side of the figure) rapidly
extends in the rightward direction instead of rolling-up around the vortex itself,
as would be expected in a two-dimensional flow, and eventually stretches around
the compact right-side vorticity, figure 2(c), t = 50/128. During the final period, the
picture does not differ significantly from that in figure 2(c); the very low values of the
forcing discharge do not induce further appreciable growth of the ventricle size, and
the vortex wake remains almost in the same position. Such a final evolution has little
practical relevance, because at this stage of the deceleration the pulse is replaced by
the following physiological phase (atrial or ventricular contraction).

An understanding of the three-dimensional dynamics can be obtained from figure 3,
where isosurfaces of λ2 are reported. Following Jeong & Hussain (1995), the scalar
function λ2 is the intermediate eigenvalue of the symmetric tensor S2 + Ω2 = SikSkj +
ΩikΩkj , where S and Ω are the symmetric and antisymmetric part of the velocity
gradient, respectively. A vortex structures is commonly identified by extreme negative
values of λ2 (roughly corresponding to local pressure minima due to vortical motion).
The structure close to the inlet section initially appears as a well-defined ring-shaped
vortex, figure 3(a). At this stage, the vorticity field is still dominated by its θ-
component and we can expect that positive and negative spots of ωy on the symmetry
plane, figure 2, roughly connect with each other with nearly circular vortex lines.
The vortex-induced boundary layer at the wall is a shear layer still not organized in
a compact structure. Nevertheless, some vorticity reconnection between the ring-like
vortex and the opposite-sign boundary layer vorticity at the nearest wall (on the right,
either in figure 2a or 3a) is taking place (Kida & Takaoka 1994; Bolzon et al. 2003).
Afterwards, as shown in figure 3(b) (see also figure 2b), the boundary layer structure
develops into an incomplete ring near the wall: vortex lines coming from the left-side
wall (θ � π) do not close on the boundary layer vorticity, that (θ � 0 and z � 0.5 ) has
paired with nearby wake vorticity, and must connect with the main vortex structure,
deviating towards the centre of the cavity and downstream. This process produces
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Figure 4. Pressure distribution at the wall and limiting streamlines pattern, St = 0.072, β = 144,
ε = 0.125; (a) t = 20/128, (b) t = 40/128, (c) t = 50/128. Pressure values from −10 (white) to
30 (dark grey).

a significant z-component of the vorticity field in the central region of the ventricle.
The three-dimensional organization of the vorticity field shows some persistence, and
does not change its shape qualitatively during the following evolution until the end
of computations, figure 3(c).

The signature of this flow evolution on the wall is shown in figure 4: the relative
pressure distribution at the wall is reported in grey scale together with the limiting
streamlines pattern (this is the front view of the actual three-dimensional pattern
computed on the cavity wall). The flow at the wall, figure 4(a), is initially divided into
three distinct zones: in the lowest part, close to the apex, the bulk irrotational flow is
driven by the wall motion, the pressure is almost constant and the limiting streamlines
are the trace of the forming boundary layer. The middle region corresponds to the
vortex-induced boundary layer where the wall stress is adverse to the entering flow.
The lower dividing line (approximately from z � 0.8 at θ = 0 to z � 1.3 at θ = π) is
a reattachment line while the upper dividing line is a separation one (approximately
from z � 0.25 at θ = 0 to z � 0 at θ = π: here the azimuthal component of the wall
stress is negative, that is the limiting streamlines travel from θ = π to θ =0). The
pressure distribution presents a band of local maxima downstream of the separation
line (z � 0.2), which divides the inlet zone, with adverse pressure gradient, from
the favourable pressure gradient downstream. At t = 40/128, the reattachment line
has disappeared, depending on the inversion of the wall vorticity due to the flow
deceleration. At this stage and afterwards, the boundary layer separation loses its
quasi-two-dimensional appearance (separation–attachment): a local wall structure
develops from θ =0 and z � 0.4 in correspondence with the vorticity reconnection; it
gives a relative minimum of pressure while the maxima are still downstream of the
separation line. During the following evolution, the separation line slightly deforms in
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Figure 5. Velocity field, x, y-projection; St = 0.072, β =144, ε =0.125 at z = 0.5; (a) t = 20/
128, (b) t = 40/128, (c) t = 50/128. The external arrows indicate the length of 5 velocity units.

accordance with the main structure dynamics while the lines starting from the focus
at θ = 0, z � 0.5, extend along the azimuthal direction up to about half the cavity,
figure 4(c), being related to the growth of the ωz component of the main vortex.

The development of the vertical vorticity component gives rise to secondary flows.
In figure 5 we report the x, y-projection of the velocity field on the cross-section at
z � 0.5. At t =20/128, the jet head has not yet reached the plane z � 0.5 where the
secondary flow is divergent due to the enlargement of the available area, figure 5(a),
and the flow pattern is directly connected to the eccentricity of the entering jet. At
t = 40/128, a similar pattern would be found in correspondence with the head of the
leading vortex structure, say z � 1, while upstream of the vortex head, figure 5(b), the
flow is dominated by the two legs of the vortex structure (compare with figure 3b),
whose z-component gives rise to two localized circulating cells, at r � 0.25 and
θ � ± π/4 (Bolzon et al. 2003). A similar pattern can be observed at t = 50/128,
figure 5(c); the legs of the vortex structure elongate following the motion of the head,
see figure 3(c), and approach each other moving towards the symmetry plane.

The overall structure is that of a ring-shaped vortex, that is wider on the side next
to the closed part of the entrance (after the longer leaflet) and more compact but still
intense on the opposite side where its core is closer to the apex, and two vertical legs
connect it to an incomplete ring wall structure behind the longer leaflet.

4.2. Influence of parameters β and ε

In figure 6, the ωy distributions on the symmetry plane at t =50/128 are reported for
four different cases, where in each picture only one parameter is changed from what
is shown in figure 2(c). In the analysed range, the flow evolution is not significantly
affected by the Stokes parameter: the same vorticity structure detected in the case
β = 144 is recognizable in figures 6(a) and 6(b) corresponding to β = 64 and β = 81,
respectively. Lower values of the Stokes number give smoother flow fields without
affecting the vorticity structure qualitatively. The variation of the eccentricity directly
corresponds to a variation of the flow geometry starting from the case ε =0.02,
figure 6(c), that does not differ significantly from the axisymmetric solution (Baccani
et al. 2002a). A progressive growth of the three-dimensionality can be observed
through the case ε = 0.05, figure 6(d), to the flow found for ε = 0.125. The transition
is continuous and does not show any appearance of instabilities.

The same conclusions can be drawn from figure 7, where the distributions of λ2 are
reported for the same fields shown in figure 6. The weak dependence of the solution on
the Stokes number is confirmed by the vortex structures in figures 7(a) and 7(b). The
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Figure 6. Distribution of ωy on the symmetry plane, St = 0.072, t = 50/128; (a) β = 64,
ε = 0.125, (b) β = 81, ε = 0.125, (c) β = 144, ε = 0.02, (d) β = 144, ε = 0.05. Levels from −262.5
to 262.5, step 25; positive values black, negative values grey.

case ε =0.02 shows a weakly asymmetric vorticity field, where the main vortex ring
structure and the opposite-sign boundary layer one are still quite distinct, figure 7(c);
the loss of coherence of the boundary layer vortex ring, which tends to connect to
the leading vortex structure, becomes more evident in figure 7(d), ε =0.05.
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Figure 7. Isosurface of λ2, St =0.072, t = 50/128; (a) β =64, ε = 0.125, (b) β = 81, ε = 0.125,
(c) β = 144, ε = 0.02, (d) β = 144, ε = 0.05. Value: (a) and (b) −300, (c) and (d) −1000.

4.3. Influence of the Strouhal number

From the results reported so far, the flow evolution is directly related to the eccentricity
of the entering jet, while the Stokes number does not play a primary role. The
influence of the other flow parameter, i.e. the Strouhal number, has been analysed
by fixing β = 81, ε = 0.125, and reducing the Strouhal number to St =0.05. The
results are reported in figure 8 in terms of the vorticity evolution on the symmetry
plane. The comparison with the similar fields in figure 2 immediately shows the
increased relevance of the convective phenomena: the entering jet penetrates the
cavity further downstream affecting the initial evolution in a quantitative manner,
figure 8(a); nevertheless from a qualitative point of view the initial picture is not
significantly different from that of figure 2(a). More relevant differences are detected
afterwards. The leading vortex structure rapidly reaches the narrower region of
the cavity, becoming therefore more constrained by the presence of the wall. The
vortex sheet connecting the left-side vortex to the entrance elongates to the right
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and is stretched further downstream by the opposite-side vorticity, see figure 8(b)
at t = 40/128, therefore anticipating and increasing the intensity of the phenomena
observed in the case St= 0.072. This dynamics continues when the two opposite sides
move almost transversally to the cavity axis, figure 8(c) at t = 50/128.

The distributions of λ2 in figure 9 show the evolution of the vorticity field from the
initial ring-like shape to the final complex three-dimensional one, when the cavity is
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Figure 10. Stereoscopic view of the isosurface of λ2, t = 38/128, ε = 0.125. β =81.
(a) St =0.072, value: −500; (b) St = 0.05, value: −5000.

almost completely filled by knotted vortex structures. The progressive loss of regularity
is accompanied by the transition to a weakly turbulent field in the central region of
the ventricle. The loss of coherence is not accompanied or preceded by the growth of
different structures. The unique coherent structure is the same as found in the previous
cases, and afterward the flow undergoes a transition to a weak turbulent regime whose
development prevents the computation being extended being extended to lower values
of the Strouhal number within our present DNS resolution capabilities.

Stereoscopic views of the complete λ2 fields at t =38/128 are reported in figure 10,
for ε = 0.125 and β =81, at St =0.072 (a) and St = 0.05 (b). As previously discussed,
at lower St the convective phenomena are more relevant, elongating the entering jet
inside of the cavity and enhancing the interaction between the main vortex structure
and the wall, but, notwithstanding the differences between the fields in figure 10, a
common evolution has been observed. During the accelerating phase, a single vortex
structure develops at the inlet. Such a unique structure interacts with the boundary
layer, inducing a wall vortex ring. The vorticity reconnection progressively disrupts
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the wall vortex on one side while the opposite side reconnects to the leading vortex
with the development of two legs of vertical vorticity. The birth of a significant ωz

component gives rise to secondary flows, which detach the boundary layer structure
from the wall and drive it towards the centre of the cavity, until the final stage of the
evolution with the persistent knotted structures in figure 10.

The formation of a single ring-shaped vortex structure at the inlet section can be
investigated in terms of the formation number F (t) =L(t)/d(t), where d(t) = σD(t) is
the time-varying diameter of the entering jet, and

L(t) =

∫ t

0

4Q(t)

πD(t)2σ 2
dt

in the present context plays the role of the piston stroke (Gharib, Rambod & Shariff
1998). It has been proven that in the case of an impulsively started jet generated by
a piston in a water tank, F � 4 is the limiting value that divides the generation of
a single vortex from that of a leading ring followed by a trailing jet. In the present
problem and for the studied cases, F is always smaller than 4, a value that can be
reached corresponding to the lowest physiological Strouhal numbers. For example,
at St � 0.047 the value F = 4 is reached at the end of the computation, t = 0.5, while
for St = 0.035 F becomes larger than 4 at t � 0.2, but its maximum at t = 0.5 is
approximately 4.7. Furthermore the limiting value is expected to increase when the
inflow is smoother than that of a piston stroke in rigid walls.

There are several differences between the present problem and that of a piston-
driven jet; however these results and clinical data from healthy subjects (Garcia
et al. 1998) would suggest that the actual left ventricle filling flow does not differ
significantly from that described here. Possibly, the single vortex structure corresponds
to a physiological optimization, like for example a minimal muscular strength in the
following ejection, as argued by Gharib et al. (1998). In any case, this flow regime
is found to be at the edge of the development of weak turbulence and a further
reduction of the Strouhal number, especially if β is increased, can qualitatively
modify the dynamics and its influence on the tissue.

5. Conclusions
A numerical analysis of the three-dimensional flow inside an expanding cavity

modelling the diastolic filling of the left ventricle has been presented. An original
mathematical method to deal with the Fourier representation of the flow equations
in axisymmetric systems of coordinates has been introduced, and implemented in the
numerical framework. The simple geometry of the model allows an accurate numerical
solution, based on a mixed spectral–finite differences method. Alternatively, a spectral
approach could be used in the meridian plane too, by expansion in terms of Chebyshev
and Legendre polynomial or prolate spheroidal wavefunctions, that automatically
satisfy the regularity conditions at the axis. These techniques are in principle very
accurate although not commonly straightforward. On another side they cannot be
easily generalized to other than the basic domains and boundary conditions.

The problem has been analysed for values of the geometrical and flow parameters
corresponding to those of a left ventricle in healthy young adults. The entering flow
organizes into a single eccentric ring-shaped vortex structure corresponding to the
head of the mitral jet. The vortex-induced boundary layer develops into an incomplete
ring structure that connects with the main vortex through two legs of almost vertical
vorticity.
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The solution is directly dependent on the properties of the entering jet. At growing
values of the eccentricity the flow field changes smoothly from almost axisymmetric to
the three-dimensional structures when values are comparable with the physiological
ones. The solution has shown a weak dependence on the Stokes number whose
influence is limited to the smoothness of the flow field.

The Strouhal number has an important influence on the solution. For decreas-
ing values, the relative contribution of convection increases, and the entry jet extends
more deeply into the ventricle and eventually may become unstable, developing
weak turbulence. The vortex structure of a single ring connected to the incomplete
wake-induced ring in the boundary layer seems to be persistent. This can be justified
by the value of the formation number (Gharib et al. 1998), which does not exceed
the critical value for the formation of a multiple vortex wake. This type of coherent
vortex structure remains the dominant flow feature before the development of weak
turbulence.

The pattern found is in qualitative agreement with that observed in vivo and in
experimental studies (Bellhouse 1972; Reul et al. 1981; Kim et al. 1995; Kilner et al.
2000; Vlachos et al. 2001), notwithstanding the differences between the present model
and an actual ventricle. The main circulating region commonly found – in planar
visualizations – behind the longer valvular side represents one part of the vortex ring
structure. The other part, which is smaller and closer to the wall near the apex, is
often not immediately visible although it is always present.

The results indicate that healthy ventricular flow is at the edge of developing weak
turbulence. This could correspond to the complex pattern in colour Doppler imaging
often recorded in echographic measurements. We can expect that some turbulence will
develop in the presence of pathologies that decrease the Strouhal number, especially
when β is large.

This analysis has been performed with simplified although fairly realistic model
and parameters. Notwithstanding the accuracy and the overall agreements, the present
work represents a basic and preliminary study in the understanding of the main fluid
dynamics involved in the left ventricular flow.

A limitation of this study is the assumption of a quiescent flow as initial condition. A
real cardiac cycle is made up of a first pulse (the early filling), the one here considered,
a second filling pulse (the atrial contraction), which is weaker in healthy conditions,
followed by the ejection of flow during the systolic contraction. Indeed, the flow is
not completely vorticity-free before filling starts and the assumption adopted, which
represents an approximation, is taken for the sake of understanding the basic diastolic
structure. However, Nakamura et al. (2004) have shown that the vortex structure is
only weakly affected by flow disturbances remaining at the onset of diastole, and
such an influence is also limited to the first, accelerating, phase. That work and our
preliminary studies of the entire cardiac cycle show that the diastolic vortex structure is
highly stretched during systole and it is ejected or dissipated almost completely before
the diastole begins. The vorticity remaining from the previous cycle is, commonly,
extremely weak although its distribution depends on the type of outflow and systolic
arrangement. Further steps are necessary to analyse sequences of complete heart beat
periods in specific conditions, and to include the influence of the actual moving-leaflet
valvular dynamics.
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